Convolutional Neural
Networks: Part 1

Lecture 10
Subir Varma

Generative Models:
- Diffusion Models

FeedForward - Auto Regressive
- VAEs

So Far...

Dense

Linear
Models

Gradient
Descent

Backprop

/
ConvNet
15 1) |
ype / \

ConvNet Types:
AlexNet ConvNet
ResNet ype -
InceptionNet RNN Types:

Encoder Decoder RNNs

Combo RNNs+ConvNets LSTMs
GRUs

A Keras Program

1 import keras
2 keras._ version

; from keras.datasets import mnist |mp0rt Dataset

3 (train_images, train labels), (test_images, test labels) = mnist.load data() (already in Tensor form)
1 train images = train_images.reshape((60000, 28 * 28)) i

2 train images = train images.astype('float32') / 255 Data ReShaplng

3 +

4 test images = test images.reshape((10000, 28 * 28)) . .

5 test images = test images.astype('float32') / 255 Data Norma||zat|0n

from keras.utils import to_categorical

: Label Conversion from Sparse to
i :::iiﬂ;:isf to_categorical(train_labels) Categorical (-I —HOt Encoded)

= to _categorical(test labels)

] eras import models

2 from keras import layers
network = models.Sequential()

network.add(layers.Dense(512, activation='relu', input shape=(28 *
k.add(layers.Dense(10, activation='softmax'))

1 network.compile(optimizer='sagd',

N \

Define the Network

OB W N

)))

o

loss="'categorical crossentropy', Compl|e the MOdeI

3 metrics=['accuracy'])

— Can process images in their native
C N N S 3D format

— Require much less parameters
— Have built in priors about the
structure of images

\55 _ ;
&7 ‘ dense dense
Y 13 13 13 _ dense
14 Y\ : ‘
A M~ ; s = . - 3[K-
3 - 3 M

HL—\ : 27 \"T=X |18 3J 13 J C 12
Input 3\ 3 3
Imag: 55 \ 384 . 384 | 256 1000
(RGB Mo |] L

‘ Max ’ = Max $ P v pooling 4096 4096

Seride o pooling Y pooling .
224 ' °f4 \ <
3
. Fully Connected
Input Convolutional Layers y

Layers

Applications

Google Photos, Google Image Search, YouTube, Video Filters in Camera Apps,
Self Driving Cars, robotics, Medical Diagnosis, Game Playing Systems

Retrieval

Classification

black widow

cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
»

rilie mushroom cherry a ascar ca
Bvertibia T agaric dalm ¢ monkey
grille | mushroom grape spider monkey
pickup Jelly fungus elderbarry titi
beach wagen gill fungus rdshire bullterrier indri
fire engine| dead-man's-fingers currant howler monkey

Applications

Segmentation

" = bu
i s

Figures copyright Shaoging Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with Figures copyright Clement Farabet, 2012.
permission. g : Reproduced with permission. [Farabet et a/, 1 2 O 1 2]
[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Applications: Self Driving Cars

pedegtrians

_ This image by GBPublic_PR is
A ° licensed under CC-BY 2.0

NVIDIA Tesla line

(these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup
would involve NVIDIA Tegras, with integrated
GPU and ARM-based CPU cores.

3 Photo by Lane Mcintosh. Copyright C5231n 2017.
self-driving cars

Applications: Image Captioning

No errors Somewhat relatec

Image
Captioning
[Vinyals et al., 2015]

[Karpathy and Fei-Fei,
2015]

A white teddy bear sitting in A man in a baseball A woman is holding a
the grass uniform throwing a ball cat in her hand

All images are CCO Public domain:
- Il he te

A man riding a wave on A cat sitting on a A woman standing on a
top of a surfboard suitcase on the floor beach holding a surfboard Captions generated by Justin Joh

using Neuralfalk2

Applications: Image Generation

Deep Dream Neural Style Transfer

L0 R ;i;&“;
é"»»i'{“v-.{i“: ' rt‘;
]‘ E N -

Original image i CCO public domain
Starry Night and Tree Roots by Van Gogh are in the public domain
G: I, Style Transfer using Convolutional Neural Networks™, CVPR 2016
Figures copyright Justin Johnson, 2015. Reproduced with permission. Generated using the Inceptionizm approach Bokeh image is in the public domain o 5 R : s 5 5 5
& 2 bl ost by G Research. Stylized i ""‘353 WPV"%M Justin Johnson, 2017; Gatys et al, “Controlling Perceptual Factors in Neural Style Transfer”, CVPR 2017

Generating Images from Captions

TRYS v EIE8E0 Y .
Fa== W-W" OOng 5 ;07

A stop sign is flying in A herd of elephants fly- A toilet seat sits open in A person skiing on sand
blue skies. ing in the blue skies. the grass field. clad vast desert.

Figure 1: Examples of generated images based on captions that describe novel scene compositions that are
highly unlikely to occur in real life. The captions describe a common object doing unusual things or set in a
strange location.

arXiv:1511.02793v2 [cs.LG] 29 Feb 2016

Playing Go using CNNs

A

Conv layer Conv layers x 10 Conv layer I S e e
Currentboard 25 feature planes 92 channels 384 channels k maps P
5 x 5 kernel 3 x 3 kernel 3 x 3 kernel

AE A - = ===

Our next move (next-1)

i / N g_& ' < -.&O- - (I_z)
— ‘;m AR S w- e

Qur counter move (next-3)

m

wenip Tree P()licy C
22/40 s~ Default policy

20/30

CNN Architecture

p—

Why are Dense FeedForward Networks
not Optimal for Images

» Consider a typical image consisting of 200x200x3 pixels,
which corresponds to 3 layers of 200x200 numbers, one for
each color Red, Green and Blue.

Hence the input consists of 120,000 numbers

» Given a typical dense feedforward network with 100 nodes in
the first hidden layer, this corresponds to 12 million weight
parameters needed to describe just this layer.

The Parameter Explosion Problem

K-ary Linear Model with CIFAR-10
Input

32X32X3 Image - Stretched to 3072X1

w|

3072 (1, Y&

Flattening causes loss of structural information
from the image

Interpretation of Weights as a
Filter - Template Matching

10 Templates

/ 32 Elen_'uer'\twi.se / 32

Multiplication

Choose Category k
% for which X*W, + By is

maximum
/32 /32
? 3 3072
a; = Zwkixi+bk, 1 <k<10
Input Image Template
W,, By

EEENNEENES
.

Issues with the One Filter Model

» Trying to detect the whole object with a single filter gglltles All
» Too many parameters These
» Lack of translational invariance Problems

* Need two different
filters to detect these

two objects
Build in the prior that a pattern remains the
same irrespective of where it is located

Step 1: Preserve the Spatial
Structure of the Input Image

32x32x3 Image -> preserve spatial structure

32 height

3 depth

Step 2: Use

Smaller Filter

32x32x3 Image -> preserve spatial structure

32 height

32 width

75
] a = Z W;X; +b
oxox3 filter =
(7
II Convolve the filter with the image

I.e. “slide over the image spatially,
computing dot products”

3 depth

Local Filtering

Step 3: Take Dot Product of Filter
with a 3-D Chunk of the Input

32x32x3 image
oxox3 filter w
=
™~ 1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.,e. 5*5*3 = 75-dimensional dot product + bias)

75
a = Z Wi X; + b
i=1

Step 4: Slide Filter all Over Image

(Convolution Operation)

32x32x3 image
oxox3 filter

2

@>® convolve (slide) over all

spatial locations

32

p—

activation map

/

£

28

Stride =1

Coavolutional Kernel Size
2 X 2 pixels

Stricde =1

A -HENE]

— e -

Benefits

» Translational Invariance

> Since the same Filter is used at all locations in the
image, CNNs are able to detect a pattern
irrespective of where it occurs in the image

» Reduction in Number of Parameters

> Instead of 32*32*3+1 = 3073 parameters, need
only
5*5*3+1 = 76 parameters!!

Results in Higher Model Capacity

Multiple Activation Maps

To Detect Multiple Shapes!

— 32x32x3 image activation maps

5x5x3 filter %
=
[E[iii:::§=4:) 28
convolve (slide) over all

spatial locations
32 / 28

Construction of Multiple Layers

For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

activation maps

N

Convolution Layer

32 A

3 6

28

We stack these up to get a “new image” of size 28x28x6!

How many Activation Maps needed?

Results in more

Node Expansion nodes but

less parameters!
7 .
- /@

A Node in

the Dense FF
Architecture
turns into 32

an Activation Map
in a ConvNet

N X

32

Implications:
- Need less training data
- Need more processing

Two Convolutional Layers

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

CONV,
RelLU
eg.6
5x5x3

32 28

filters

Three Convolutional Layers

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

3

Input Layer

CONYV,
RelLU
eg.6
ox5x3
filters

6

28

28

Hidden Layer 1

CONV,
RelLU
e.g. 10
9X5X6
filters

A

10

.

CONV,
RelLU

Hidden Layer 2

Summary

/ 5x5x3 filter

32 height
L/
II Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”
32 width
3 depth

(a)

activation map

32x32x3 image

/ =
/ V 5x5x3 filter /
@’>O ’ 28

convolve (slide) over all

spatial locations ,
A /28

()

|
—

=\

3

N

w|

N\

N

w|

32

___— 32x32x3 image
E

5x5x3 filter w

"~ 1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

wlz +b

(b)

activation maps

28

Convolution Layer

(d)

Stride

=1

Stride =1

— e -

Stride = 2

Convolutional Kernel Size

Input Size 2x 2 phosls > Output Size
2 x 3 pixels

of 1 pixel towards right
of the 2D input

Zero Padding

32x32x3

36

Zero Padding =1 > 34 X34 X3
Zero Padding =2 236 X36X3

OO0 |I0O|0O|O|IO|O|OC|O0|O
O|IO|IO|0O|IO|O|O|O|OC|OC|O|O
olo|lo|lo|lo|o|lo|lo|lo|lo|lo|©@
O|IOo|IO|0O|IO|O|O|IO|O|O|O|O

A
v

36

Pooling

p—

Max Pooling

Single depth slice

A
X 1112 | 4
max pool with 2x2 filters
5 6 7 8 and stride 2 6 8
>
312|110 3|4
112 | 3| 4
These numbers give the
> same information, but some
y of the locality info is lost

These Numbers tell us whether
a pattern is present at the 16 locations

Pooling

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

pool

—b

112x112x64

|

— 112
downsampling

112

No Additional Parameters Needed!

A Complete CNN: AlexNet (2012)

Final Image

representation Logits
n \
\4 v
.« ' FC1 FC2 FC3
1 \27 | dense dense
o\ ’ 11 \13 — — Oense
11 -l‘| [I [
| o - 3 K=
- 5| \f —T1> 3 - o
i I N] . ’ > | 23 3[1 s
3 3 3
Input) \ \ \
24 Image 53 384 { 384 256 1000
(RGB) ‘ Max | |
“ Max 3 = Max ﬁpoolin[e e
e \[o [e sl L
24\ || g % . N -

: Conv 1 Conv 2 \\Conv 3 Conv4 Conv5 Linear
Input AN P Classifier
Image A\

Pooling

Layers

CNNs in Keras

p—

/32
— 30

28
> > —
(3,3) (3,3 (3.3
14
30 28 32 e
32 32 -
32 Conv Conv Pooling Conv
2 Layer 1 Layer2 Layer 1 Layer 3

3 * 3 *
RAY w~

model = models.Se
model.add(layers
model.add(layers
model.add(layers
model.add(layers
model.add(layers
model.add(layers
model.add(layers

model.add(layers.
model.add(layers.
model.add(layers

32 = 864 +32 = 896

quential()

Flatten())
Dense (1024, activation='relu'))
.Dense (10, activation='softmax'))

Conv
Layer 4

Pooling
Layer 2

.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
.Conv2D(32, (3, 3), activation='relu'))
.MaxPooling2D((2, 2)))

.Conv2D(64, (3, 3), activation='relu'))
.Conv2D(64, (3, 3), activation='relu'))
.MaxPooling2D((2, 2)))

.Conv2D(64, (3, 3), activation='relu'))

3

Conv
Layer 5

Dense FF

Layer

—>
Flatten

576
=49*128

512

Logit
Layer

s
5
s

10

ConvNets in Keras

1 model.summary()

Layer (type) Output Shape Param #
conv2d_1 (Conv2D) - (None, 148, 148, 32) 896 i
max_pooling2d 1 (MaxPooling2 (None, 74, 74, 32) 0
conv2d_2 (Conv2D) (None, 72, 72, 64) 18496
max_pooling2d 2 (MaxPooling2 (None, 36, 36, 64) 0
conv2d_3 (Conv2D) (None, 34, 34, 128) 73856
max_pooling2d 3 (MaxPooling2 (None, 17, 17, 128) 0
conv2d_4 (Conv2D) (None, 15, 15, 128) 147584
max_pooling2d 4 (MaxPooling2 (None, 7, 7, 128) 0
flatten 1 (Flatten) (None, 6272) 0
dense_1 (Dense) (None, 512) 3211776
dense_2 (Dense) (None, 1) 513

Total params: 3,453,121
Trainable params: 3,453,121
Non-trainable params: 0

Further Reading

» Chapters 12: ConvNets Part 1
» Chollet: Chapter 8, Section 8.1

