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A Keras Program

1 import keras
2 keras._ version

; from keras.datasets import mnist |mp0rt Dataset

3 (train_images, train labels), (test_images, test labels) = mnist.load data() (already in Tensor form)
1 train images = train_images.reshape( (60000, 28 * 28)) i

2 train images = train images.astype('float32') / 255 Data ReShaplng

3 +

4 test images = test images.reshape( (10000, 28 * 28)) . .

5 test images = test images.astype( 'float32') / 255 Data Norma||zat|0n

from keras.utils import to_categorical

: Label Conversion from Sparse to
i :::iiﬂ;:isf to_categorical(train_labels) Categorical (-I —HOt Encoded)

= to _categorical(test labels)

] eras import models

2 from keras import layers
network = models.Sequential()

network.add(layers.Dense(512, activation='relu', input shape=(28 *
k.add(layers.Dense(10, activation='softmax'))

1 network.compile(optimizer='sagd',
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loss="'categorical crossentropy', Compl|e the MOdeI

3 metrics=['accuracy'])




— Can process images in their native
C N N S 3D format

— Require much less parameters
— Have built in priors about the
structure of images
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Applications

Google Photos, Google Image Search, YouTube, Video Filters in Camera Apps,
Self Driving Cars, robotics, Medical Diagnosis, Game Playing Systems

Retrieval

Classification

black widow
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Applications

Segmentation
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Figures copyright Shaoging Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with Figures copyright Clement Farabet, 2012.
permission. g : Reproduced with permission. [ Farabet et a/, 1 2 O 1 2 ]
[Faster R-CNN: Ren, He, Girshick, Sun 2015]




Applications: Self Driving Cars

pedegtrians

_ This image by GBPublic_PR is
A ° licensed under CC-BY 2.0

NVIDIA Tesla line

(these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup
would involve NVIDIA Tegras, with integrated
GPU and ARM-based CPU cores.

3 Photo by Lane Mcintosh. Copyright C5231n 2017.
self-driving cars




Applications: Image Captioning

No errors Somewhat relatec

Image
Captioning
[Vinyals et al., 2015]

[Karpathy and Fei-Fei,
2015]

A white teddy bear sitting in A man in a baseball A woman is holding a
the grass uniform throwing a ball cat in her hand

All images are CCO Public domain:
- Il he te

A man riding a wave on A cat sitting on a A woman standing on a
top of a surfboard suitcase on the floor beach holding a surfboard Captions generated by Justin Joh

using Neuralfalk2




Applications: Image Generation

Deep Dream Neural Style Transfer

L0 R ;i;&“;
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Original image i CCO public domain
Starry Night and Tree Roots by Van Gogh are in the public domain
G: I, Style Transfer using Convolutional Neural Networks™, CVPR 2016
Figures copyright Justin Johnson, 2015. Reproduced with permission. Generated using the Inceptionizm approach Bokeh image is in the public domain o 5 R : s 5 5 5
& 2 bl ost by G Research. Stylized i ""‘353 WPV"%M Justin Johnson, 2017; Gatys et al, “Controlling Perceptual Factors in Neural Style Transfer”, CVPR 2017




Generating Images from Captions

TRYS v EIE8E0 Y .
Fa== W-W" OOng 5 ;07

A stop sign is flying in A herd of elephants fly- A toilet seat sits open in A person skiing on sand
blue skies. ing in the blue skies. the grass field. clad vast desert.

Figure 1: Examples of generated images based on captions that describe novel scene compositions that are
highly unlikely to occur in real life. The captions describe a common object doing unusual things or set in a
strange location.

arXiv:1511.02793v2 [cs.LG] 29 Feb 2016




Playing Go using CNNs
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CNN Architecture
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Why are Dense FeedForward Networks
not Optimal for Images

» Consider a typical image consisting of 200x200x3 pixels,
which corresponds to 3 layers of 200x200 numbers, one for
each color Red, Green and Blue.

Hence the input consists of 120,000 numbers

» Given a typical dense feedforward network with 100 nodes in
the first hidden layer, this corresponds to 12 million weight
parameters needed to describe just this layer.

The Parameter Explosion Problem




K-ary Linear Model with CIFAR-10
Input

32X32X3 Image - Stretched to 3072X1

w|

3072 (1, Y&

Flattening causes loss of structural information
from the image



Interpretation of Weights as a
Filter - Template Matching

10 Templates
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Issues with the One Filter Model

» Trying to detect the whole object with a single filter gglltles All
» Too many parameters These
» Lack of translational invariance Problems

* Need two different
filters to detect these

two objects
Build in the prior that a pattern remains the
same irrespective of where it is located




Step 1: Preserve the Spatial
Structure of the Input Image

32x32x3 Image -> preserve spatial structure

32 height

3 depth




Step 2: Use

Smaller Filter

32x32x3 Image -> preserve spatial structure

32 height

32 width

75
] a = Z W;X; +b
oxox3 filter =
(7
II Convolve the filter with the image

I.e. “slide over the image spatially,
computing dot products”

3 depth

Local Filtering




Step 3: Take Dot Product of Filter
with a 3-D Chunk of the Input

32x32x3 image
oxox3 filter w
=
™~ 1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.,e. 5*5*3 = 75-dimensional dot product + bias)

75
a = Z Wi X; + b
i=1




Step 4: Slide Filter all Over Image

(Convolution Operation)

32x32x3 image
oxox3 filter

2

@>® convolve (slide) over all

spatial locations

32
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activation map
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Stride =1

Coavolutional Kernel Size
2 X 2 pixels

Stricde =1
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Benefits

» Translational Invariance

> Since the same Filter is used at all locations in the
image, CNNs are able to detect a pattern
irrespective of where it occurs in the image

» Reduction in Number of Parameters

> Instead of 32*32*3+1 = 3073 parameters, need
only
5*5*3+1 = 76 parameters!!

Results in Higher Model Capacity




Multiple Activation Maps

To Detect Multiple Shapes!

— 32x32x3 image activation maps

5x5x3 filter %
=
[E[iii:::§=4:) 28
convolve (slide) over all

spatial locations
32 / 28




Construction of Multiple Layers

For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

activation maps

N

Convolution Layer

32 A

3 6

28

We stack these up to get a “new image” of size 28x28x6!

How many Activation Maps needed?



Results in more

Node Expansion nodes but

less parameters!
7 .
- /@

A Node in

the Dense FF
Architecture
turns into 32

an Activation Map
in a ConvNet

N X

32

Implications:
- Need less training data
- Need more processing




Two Convolutional Layers

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

CONV,
RelLU
eg.6
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32 28

filters




Three Convolutional Layers

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

3
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28
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Hidden Layer 1
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Summary

/ 5x5x3 filter

32 height
L/
II Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”
32 width
3 depth
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"~ 1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)
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activation maps
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Stride
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Stride =1
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Stride = 2

Convolutional Kernel Size

Input Size 2x 2 phosls > Output Size
2 x 3 pixels

of 1 pixel towards right
of the 2D input




Zero Padding

32x32x3

36

Zero Padding =1 > 34 X34 X3
Zero Padding =2 236 X36X3
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Pooling
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Max Pooling

Single depth slice

A
X 1112 | 4
max pool with 2x2 filters
5 6 7 8 and stride 2 6 8
>
312|110 3|4
112 | 3| 4
These numbers give the
> same information, but some
y of the locality info is lost

These Numbers tell us whether
a pattern is present at the 16 locations




Pooling

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

pool

—b

112x112x64

|

— 112
downsampling

112

No Additional Parameters Needed!



A Complete CNN: AlexNet (2012)

Final Image
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CNNs in Keras
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model = models.Se
model.add(layers
model.add(layers
model.add(layers
model.add(layers
model.add(layers
model.add(layers
model.add(layers

model.add(layers.
model.add(layers.
model.add(layers

32 = 864 +32 = 896

quential()

Flatten())
Dense (1024, activation='relu'))
.Dense (10, activation='softmax'))

Conv
Layer 4

Pooling
Layer 2

.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
.Conv2D(32, (3, 3), activation='relu'))
.MaxPooling2D( (2, 2)))

.Conv2D(64, (3, 3), activation='relu'))
.Conv2D(64, (3, 3), activation='relu'))
.MaxPooling2D( (2, 2)))

.Conv2D(64, (3, 3), activation='relu'))

3

Conv
Layer 5

Dense FF
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Flatten

576
=49*128
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Logit
Layer
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ConvNets in Keras

1 model.summary()

Layer (type) Output Shape Param #
conv2d_1 (Conv2D) - (None, 148, 148, 32) 896 i
max_pooling2d 1 (MaxPooling2 (None, 74, 74, 32) 0
conv2d_2 (Conv2D) (None, 72, 72, 64) 18496
max_pooling2d 2 (MaxPooling2 (None, 36, 36, 64) 0
conv2d_3 (Conv2D) (None, 34, 34, 128) 73856
max_pooling2d 3 (MaxPooling2 (None, 17, 17, 128) 0
conv2d_4 (Conv2D) (None, 15, 15, 128) 147584
max_pooling2d 4 (MaxPooling2 (None, 7, 7, 128) 0
flatten 1 (Flatten) (None, 6272) 0
dense_1 (Dense) (None, 512) 3211776
dense_2 (Dense) (None, 1) 513

Total params: 3,453,121
Trainable params: 3,453,121
Non-trainable params: 0




Further Reading

» Chapters 12: ConvNets Part 1
» Chollet: Chapter 8, Section 8.1




