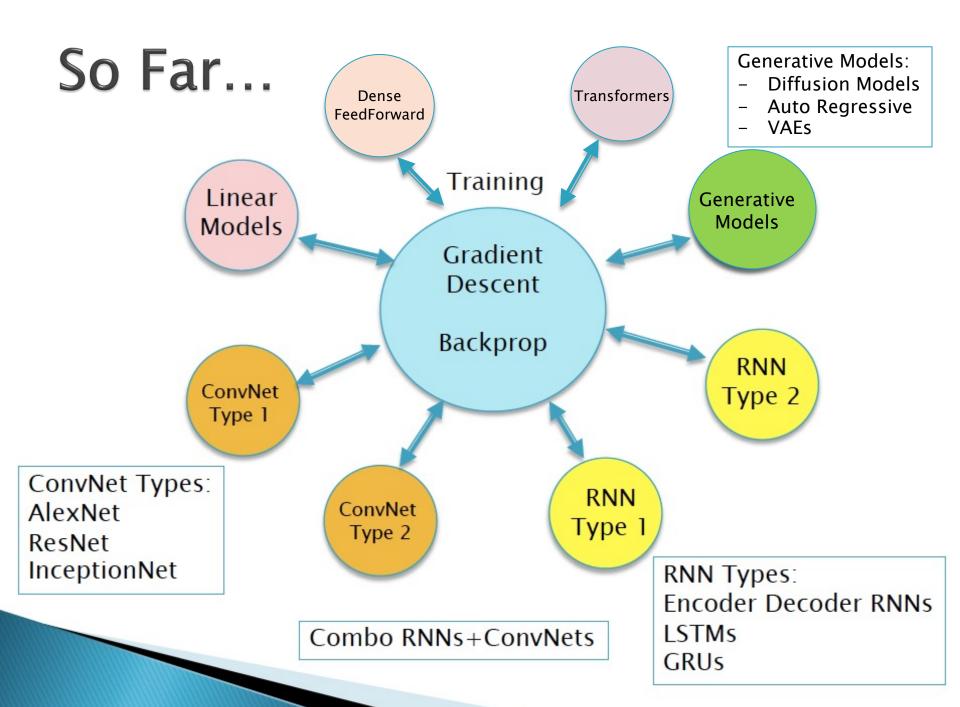
Convolutional Neural Networks: Part 1 Lecture 10 Subir Varma

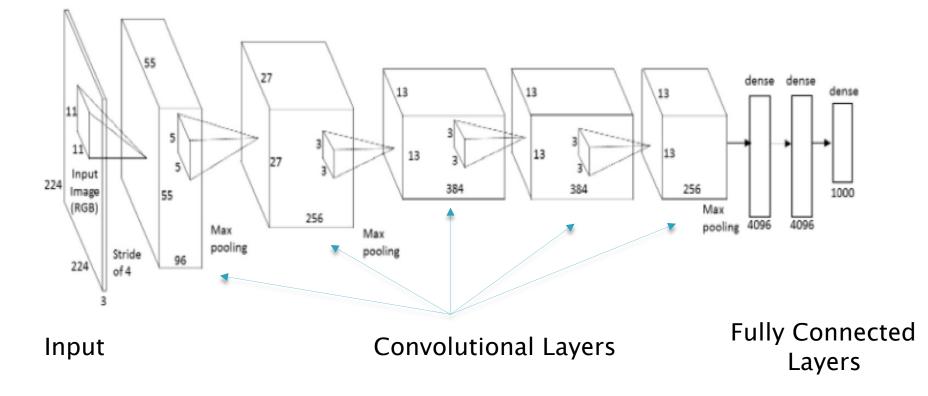


A Keras Program

```
import keras
  keras. version
  from keras.datasets import mnist
                                                                            Import Dataset
2
                                                                            (already in Tensor form)
3
  (train images, train labels), (test images, test labels) = mnist.load data()
  train images = train images.reshape((60000, 28 * 28))
                                                                           Data Reshaping
  train images = train images.astype('float32') / 255
2
                                                                           +
  test images = test images.reshape((10000, 28 * 28))
4
                                                                           Data Normalization
  test images = test images.astype('float32') / 255
  from keras.utils import to categorical
                                                       Label Conversion from Sparse to
2
  train labels = to categorical(train labels)
3
                                                       Categorical (1–Hot Encoded)
  test labels = to categorical(test labels)
  from keras import models
  from keras import layers
                                                                             Define the Network
  network = models.Sequential()
  network.add(layers.Dense(512, activation='relu', input shape=(28 * 28,)))
  network.add(layers.Dense(10, activation='softmax'))
6
  network.compile(optimizer='sgd',
1
                                                                    Compile the Model
2
                 loss='categorical crossentropy',
                 metrics=['accuracy'])
3
```

CNNs

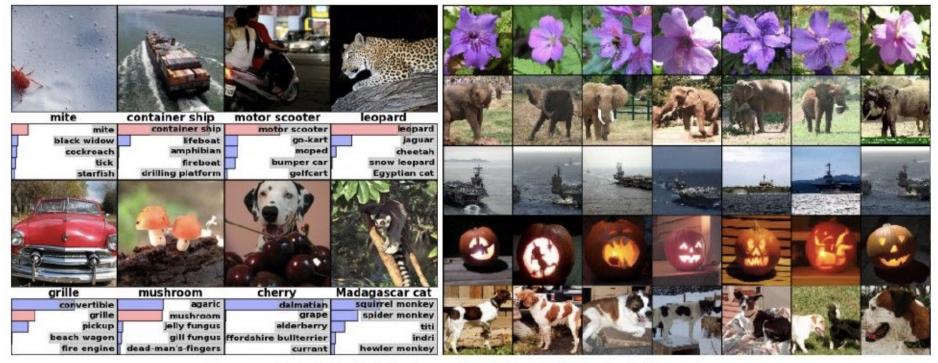
- Can process images in their native 3D format
- Require much less parameters
- Have built in priors about the structure of images



Applications

Google Photos, Google Image Search, YouTube, Video Filters in Camera Apps, Self Driving Cars, robotics, Medical Diagnosis, Game Playing Systems

Classification



Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Applications

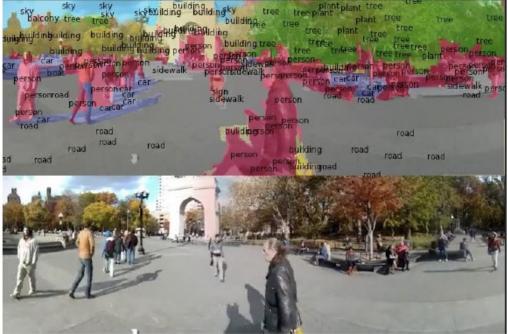
Detection

person : 0.992

Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission.

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

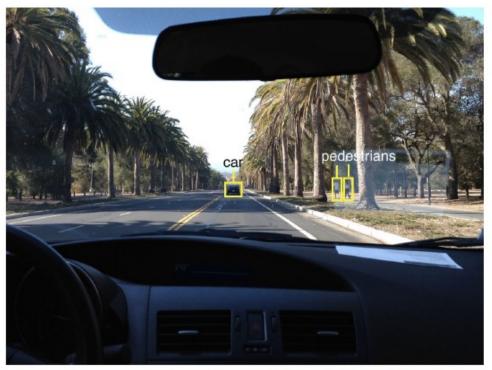
Segmentation



Figures copyright Clement Farabet, 2012. Reproduced with permission.

[Farabet et al., 2012]

Applications: Self Driving Cars



self-driving cars

Photo by Lane McIntosh. Copyright CS231n 2017.

NVIDIA Tesla line (these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup would involve NVIDIA Tegras, with integrated GPU and ARM-based CPU cores.

Applications: Image Captioning

No errors

Minor errors

Somewhat related

A white teddy bear sitting in the grass

A man riding a wave on top of a surfboard

A man in a baseball uniform throwing a ball

A cat sitting on a suitcase on the floor

A woman is holding a cat in her hand

A woman standing on a beach holding a surfboard

Image Captioning

[Vinyals et al., 2015] [Karpathy and Fei-Fei, 2015]

All images are CC0 Public domain:

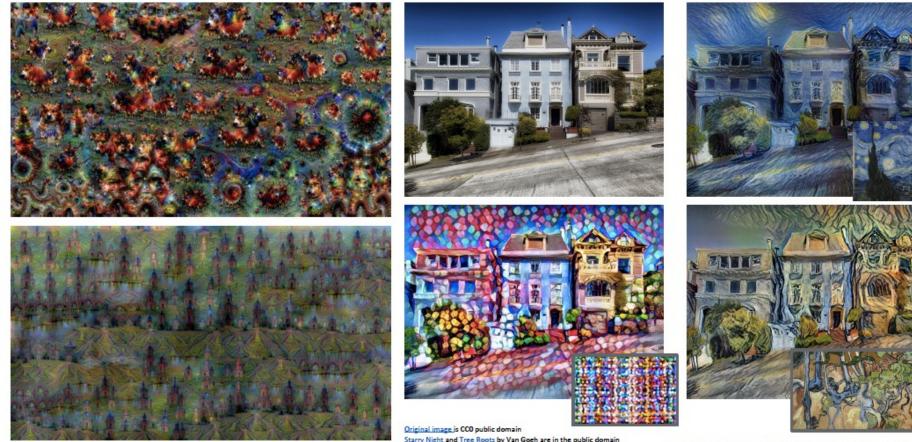
https://pixabay.com/en/luggage-antique-cat-1643010/ https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/ https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/ https://pixabay.com/en/woman-female-model-portrait-adult-983967/ https://pixabay.com/en/handstand-lake-meditation-496008/ https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Captions generated by Justin Johnson using Neuraltalk2

Applications: Image Generation

Deep Dream

Neural Style Transfer



Figures copyright Justin Johnson, 2015. Reproduced with permission. Generated using the Inceptionism approach from a blog post by Google Research.

Original image is CCO public domain <u>Starry Night</u> and <u>Tree Roots</u> by Van Gogh are in the public domain <u>Rokeh image</u> is in the public domain Stylized images copyright Justin Johnson, 2017; second with second public.

Gatys et al, "Image Style Transfer using Convolutional Neural Networks", CVPR 2016 Gatys et al, "Controlling Perceptual Factors in Neural Style Transfer", CVPR 2017

Generating Images from Captions

A stop sign is flying in blue skies.

A herd of elephants flying in the blue skies.

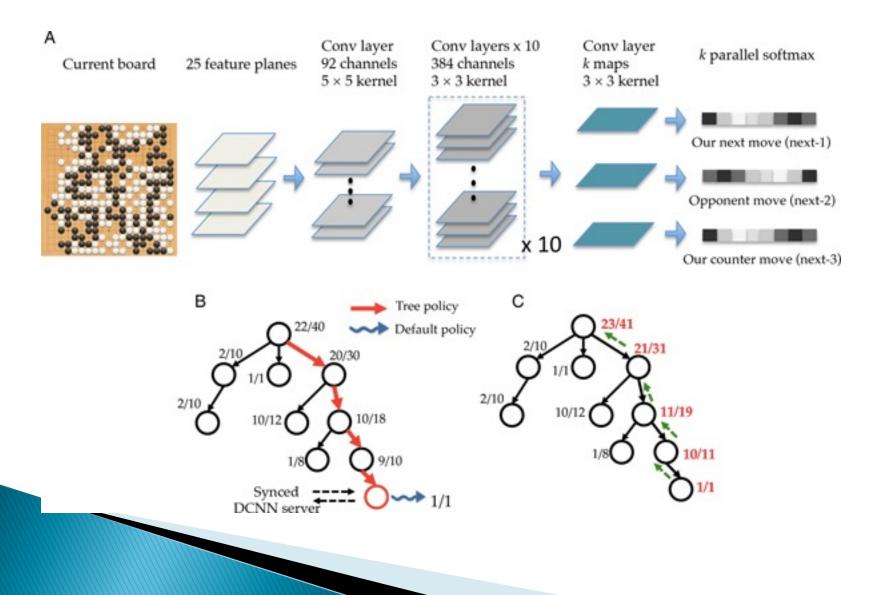
A toilet seat sits open in the grass field.

A person skiing on sand clad vast desert.

Figure 1: Examples of generated images based on captions that describe novel scene compositions that are highly unlikely to occur in real life. The captions describe a common object doing unusual things or set in a strange location.

arXiv:1511.02793v2 [cs.LG] 29 Feb 2016

Playing Go using CNNs



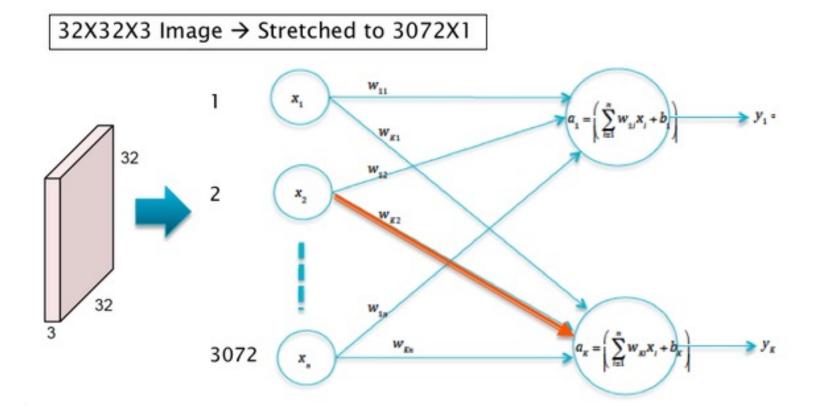
CNN Architecture

Why are Dense FeedForward Networks not Optimal for Images

- Consider a typical image consisting of 200×200×3 pixels, which corresponds to 3 layers of 200×200 numbers, one for each color Red, Green and Blue. Hence the input consists of 120,000 numbers
- Given a typical dense feedforward network with 100 nodes in the first hidden layer, this corresponds to 12 million weight parameters needed to describe just this layer.

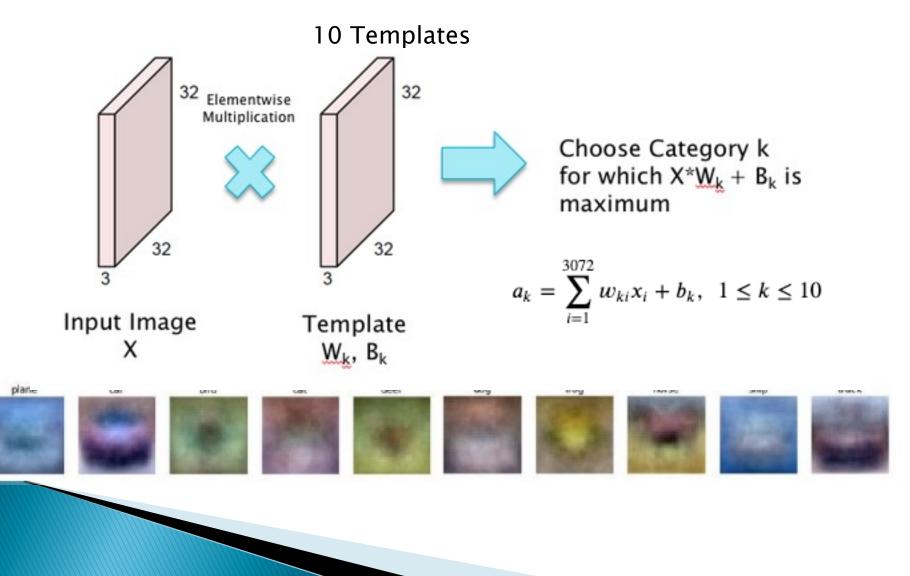
The Parameter Explosion Problem

K-ary Linear Model with CIFAR-10 Input



Flattening causes loss of structural information from the image

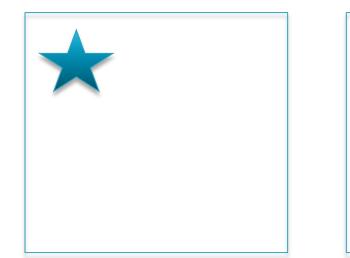
Interpretation of Weights as a Filter – Template Matching

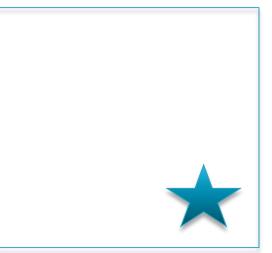


Issues with the One Filter Model

- Trying to detect the whole object with a single filter
- Too many parameters
- Lack of translational invariance

CNNs Solve All These Problems



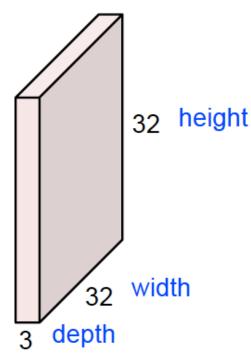


Need two different filters to detect these two objects

Build in the prior that a pattern remains the same irrespective of where it is located

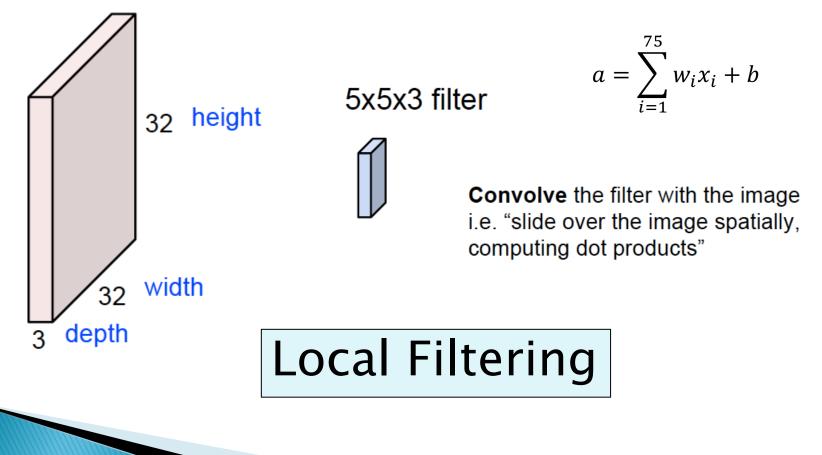
Step 1: Preserve the Spatial Structure of the Input Image

32x32x3 image -> preserve spatial structure

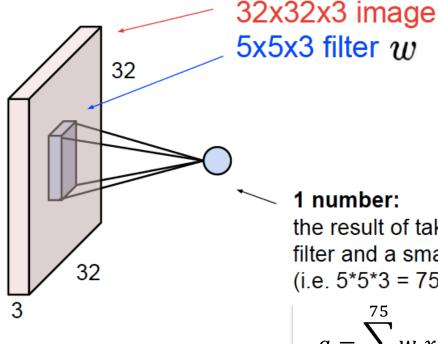


Step 2: Use Smaller Filter

32x32x3 image -> preserve spatial structure



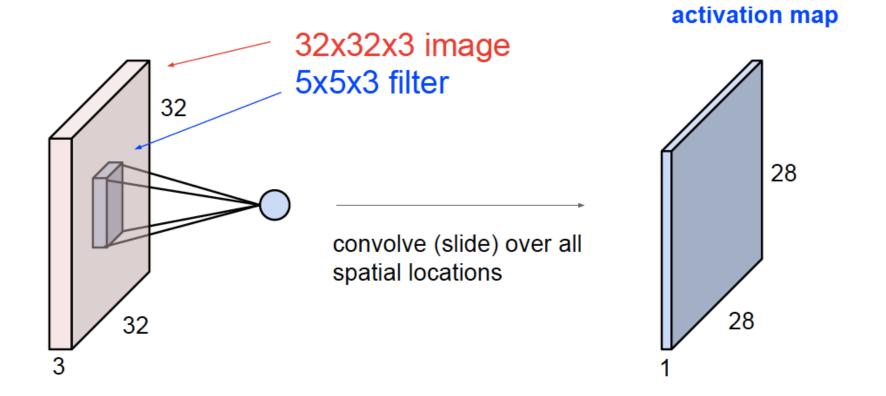
Step 3: Take Dot Product of Filter with a 3-D Chunk of the Input



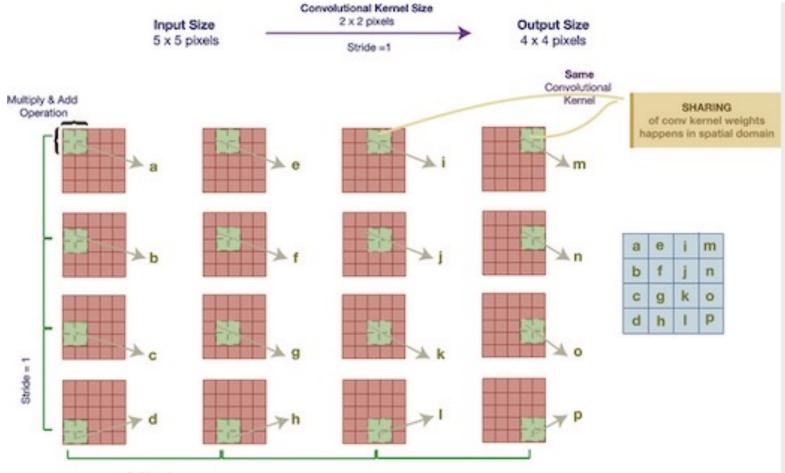
the result of taking a dot product between the filter and a small 5x5x3 chunk of the image (i.e. 5*5*3 = 75-dimensional dot product + bias)

$$a = \sum_{i=1}^{75} w_i x_i + b$$

Step 4: Slide Filter all Over Image (Convolution Operation)



Stride =1



Stride = 1

Benefits

Translational Invariance

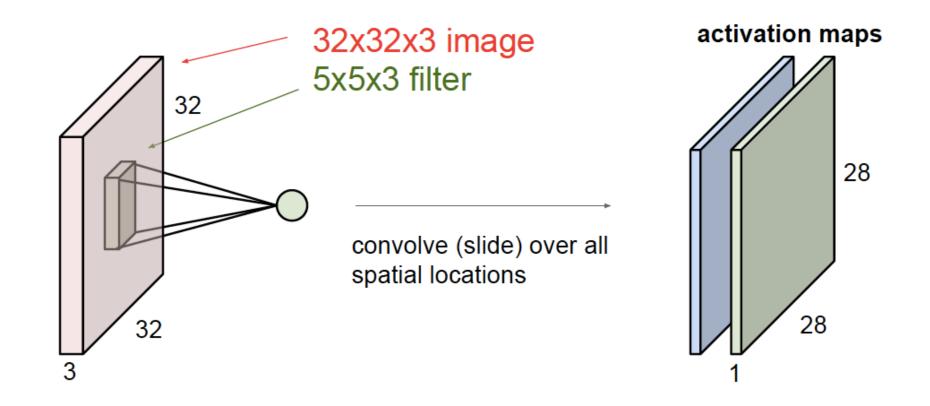
- Since the same Filter is used at all locations in the image, CNNs are able to detect a pattern irrespective of where it occurs in the image
- Reduction in Number of Parameters
 - Instead of 32*32*3+1 = 3073 parameters, need only

5*5*3+1 = 76 parameters!!

Results in Higher Model Capacity

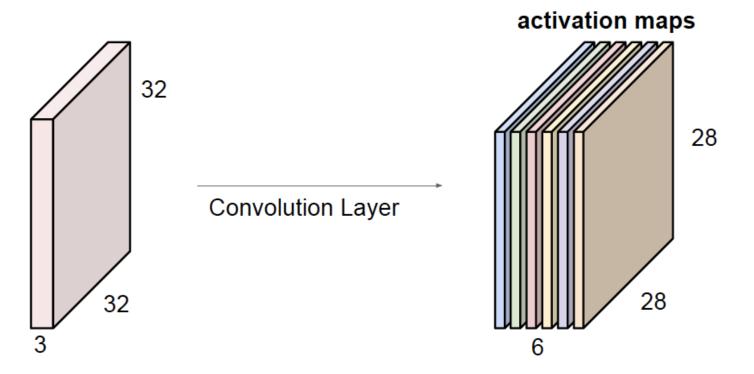
Multiple Activation Maps

To Detect Multiple Shapes!



Construction of Multiple Layers

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:



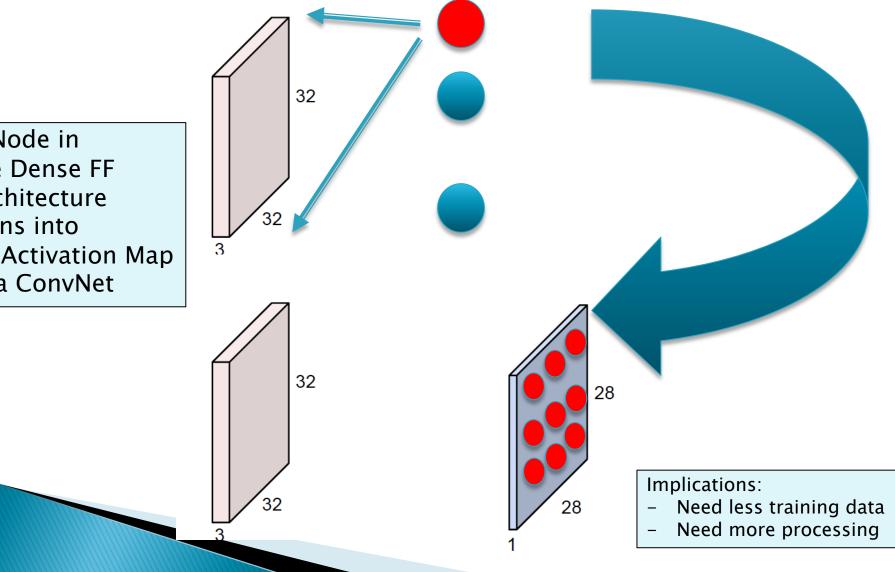
We stack these up to get a "new image" of size 28x28x6!

How many Activation Maps needed?

Node Expansion

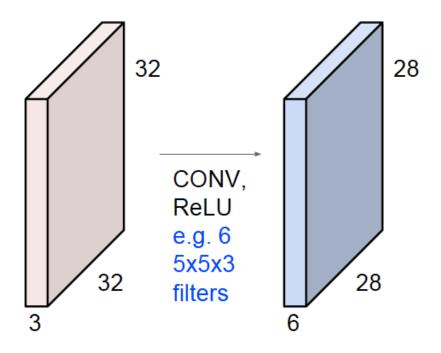
Results in more nodes but less parameters!

A Node in the Dense FF Architecture turns into an Activation Map in a ConvNet



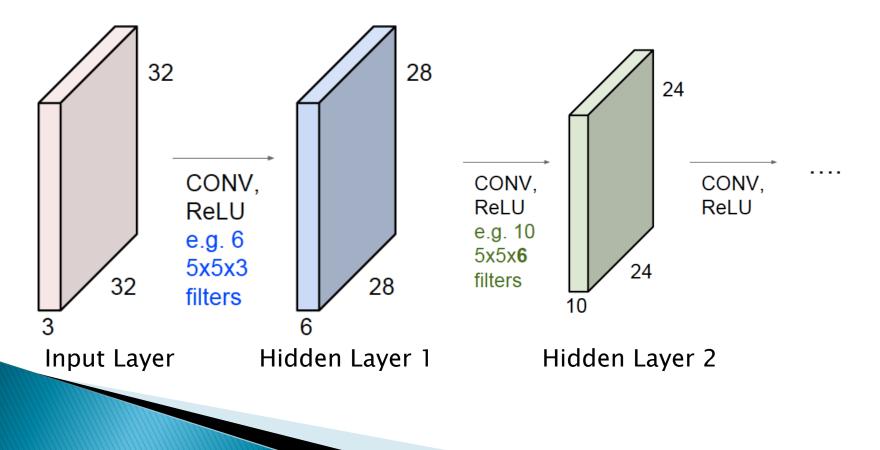
Two Convolutional Layers

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

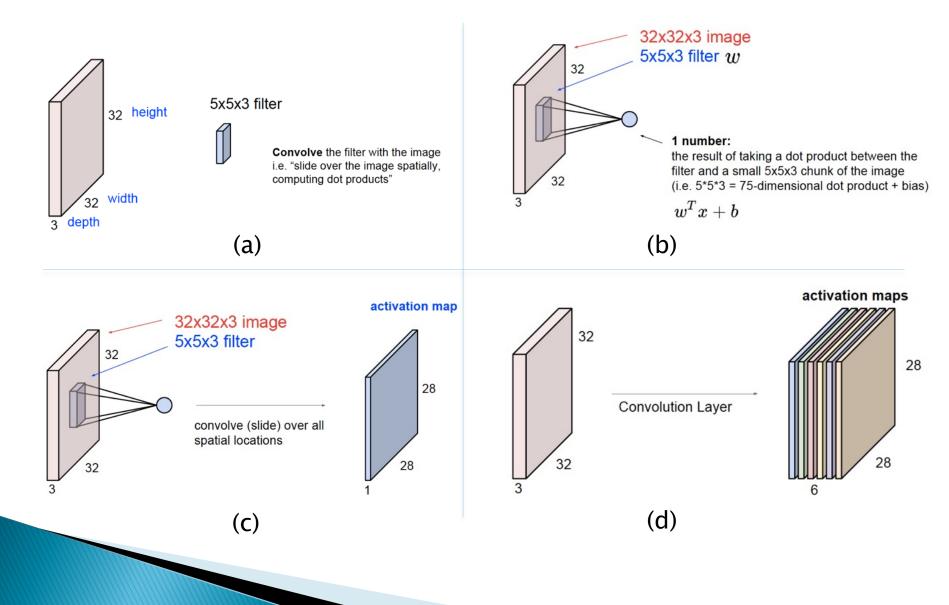


Three Convolutional Layers

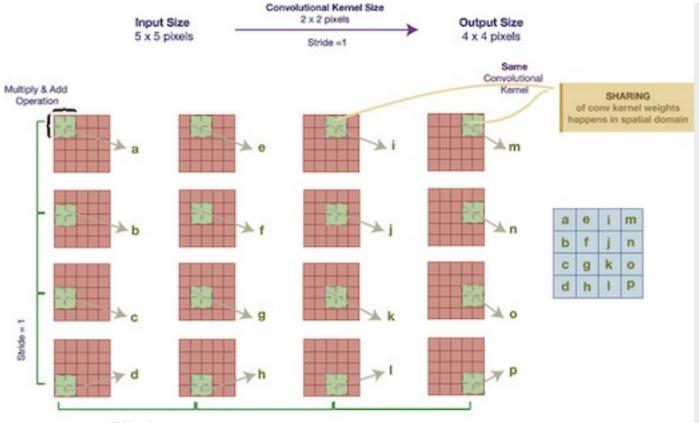
Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions



Summary

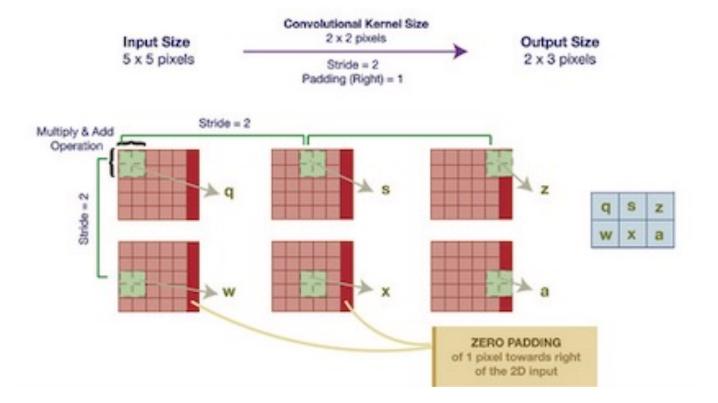


Stride =1



Stride = 1

Stride = 2



Zero Padding

32 x 32 x 3

Zero Padding = 1 \rightarrow 34 X 34 X 3 Zero Padding = 2 \rightarrow 36 X 36 X 3

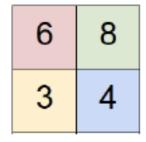
Pooling

Max Pooling

Single depth slice

Х

max pool with 2x2 filters and stride 2



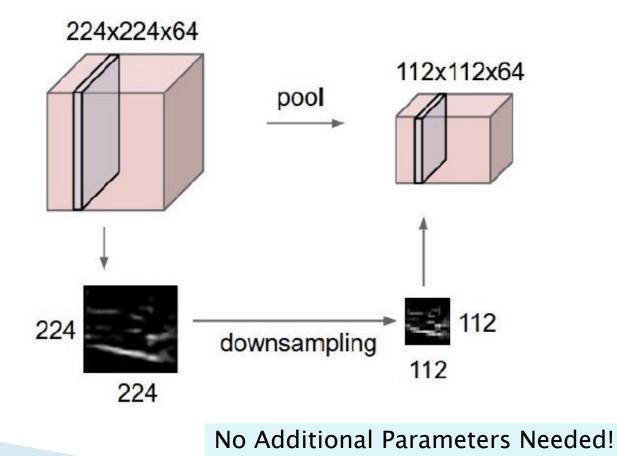
These numbers give the same information, but some of the locality info is lost

These Numbers tell us whether a pattern is present at the 16 locations

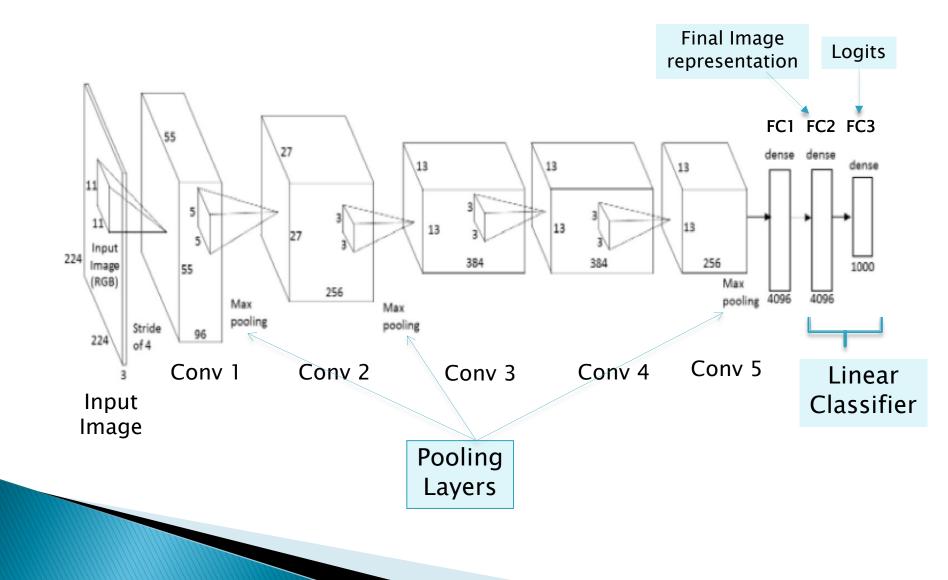
٧

Pooling

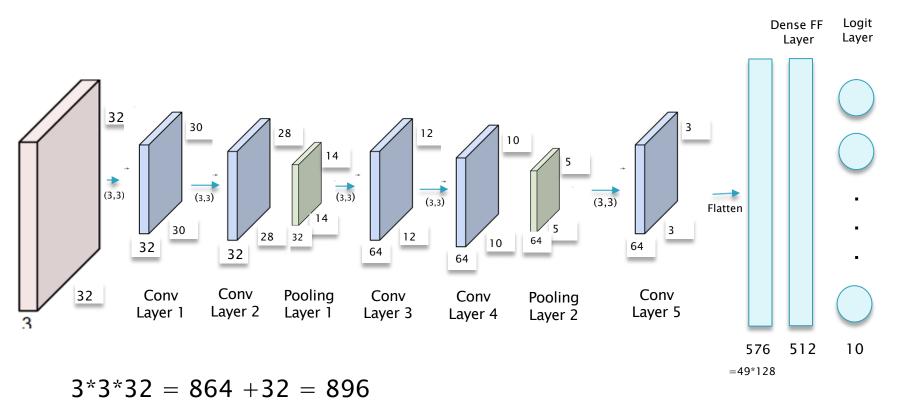
- makes the representations smaller and more manageable
- operates over each activation map independently:



A Complete CNN: AlexNet (2012)



CNNs in Keras



```
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.Conv2D(32, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Platten())
model.add(layers.Dense(1024, activation='relu'))
```

ConvNets in Keras

1 model.summary()

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 148, 148, 3	2) 896
<pre>max_pooling2d_1 (MaxPooling2</pre>	(None, 74, 74, 32)	0
conv2d_2 (Conv2D)	(None, 72, 72, 64)	18496
<pre>max_pooling2d_2 (MaxPooling2</pre>	(None, 36, 36, 64)	0
conv2d_3 (Conv2D)	(None, 34, 34, 128) 73856
<pre>max_pooling2d_3 (MaxPooling2</pre>	(None, 17, 17, 128) 0
conv2d_4 (Conv2D)	(None, 15, 15, 128) 147584
<pre>max_pooling2d_4 (MaxPooling2</pre>	(None, 7, 7, 128)	0
flatten_1 (Flatten)	(None, 6272)	0
dense_1 (Dense)	(None, 512)	3211776
dense_2 (Dense)	(None, 1)	513
Total params: 3,453,121 Trainable params: 3,453,121 Non-trainable params: 0		

Further Reading

- Chapters 12: ConvNets Part 1
- Chollet: Chapter 8, Section 8.1